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Abstract

Current reproducibility research addresses the challenge of re-
execution (executing an artifact someone else prepared), and it
has chipped away at the reproducibility crisis only to reveal a com-
prehensibility crisis. Addressing this crisis requires that we focus
on the question of why we care about reproducibility: to validate
and peer-review others’ work. Researchers who want to build upon
published work might be able to execute the same code on the same
data, but that is not the same as understanding the methodology
embodied in that code.

In computational science, scientists now need both domain knowl-
edge and computational knowledge to review a study well. We cur-
rently relieve them of the burden of computational knowledge by
providing push-button reproducibility, but in doing so, we have in-
advertently removed the “burden” of needing to understand how the
analysis works. An opaque experiment that deterministically pro-
duces the exact same number across different platforms, even when
executed by other users, is still an opaque experiment. Advancing
science requires that a research artifact produce a roughly determin-
istic outcome and demonstrate that the computation matches the
methodology and analysis appearing in its publication. We propose
embracing comprehensibility as a desired outcome of reproducibil-
ity and call upon our community to explore how we can improve
the comprehensibility of computational experiments. We suggest
research directions using emerging technologies such as LLMs com-
bined with existing research in provenance and virtualization to
enable more scientists to generate comprehensible artifacts.
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1 Introduction

The reproducibility community has worked diligently to identify re-
producibility barriers and produce solutions for them. Case studies
and user surveys highlight both cultural and technical challenges
[4, 10, 25, 26, 28]. Cultural issues have inspired policy changes at
journals and conferences, such as the introduction of reproducibil-
ity badges [7]. Meanwhile, researchers are addressing technical
challenges to simplify reproducible computational artifacts.

Reproducibility research is necessary to achieve the scientific
standards at the heart of the scientific method. It is now time to
expand the scope of computational reproducibility research. We
encourage our fellow reproducibility researchers to build on top of
data practices and re-execution to support knowledge transfer.

The purpose of scientific reproducibility is to provide to one’s
peers all of the tools and information necessary to scrutinize one’s
claims in an informed manner. An incomprehensible artifact re-
sists scrutiny. A key property of an artifact should be its connec-
tion to the corresponding publication. Consider ELISA, a novel in-
memory object sharing scheme for Virtual Machines (VMs) [35].
Its reproducibility artifact [34] contains a “Commentary” section
in its README that bridges “the descriptions in the paper and the
source code of the ELISA prototype.” This bridging is critical for
comprehensibility but must currently be done manually and at a
burden to the authors. We advocate for a world where such artifacts
are the norm without requiring significant effort.

Unfortunately, it is currently impractical for many venues to
require a successfully reproduced artifact. Yet, current research
shows that even just having artifacts available can lead to benefits
such as higher citations [8, 23]. If artifacts are easier to review due
to better reproducibility and comprehensibility, then it will be easier
to restructure submission processes to include them.

We propose that the reproducibility community explore new
technology, integrate lessons learned from user experience (UX)
research, and revisit prior work so that the solutions we generate
facilitate comprehensibility. Natural language is the root cause of
many comprehensibility barriers, and recent advances in natural
language processing (i.e., LLMs) have the potential to provide solu-
tions. While LLMs are imperfect, we can benefit from careful UX
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studies demonstrating how to use the technology as a supplement
to thoughtful, expert-driven work grounded in critical evaluation.
Additionally, UX studies focusing on the trade-off around researcher
workload and a well-documented artifact can inform sustainable
comprehensibility-driven workflows. Leveraging these UX studies
to improve artifact comprehensibility and combining them with
reproducibility tools will produce a virtuous cycle in which artifacts
become more user friendly and more researchers avail themselves
of tools that enable reproducibility and comprehensibility.

2 The Need for Reproducibility Comprehension

We identify three specific motivations for research into reproducibil-
ity comprehension.

(1) Scientific reproducibility must ultimately support peer-review
of scientific results.

(2) Today’s reproducibility tools often lead to opaque science.

(3) Researchers report that ensuring reproducibility is time-
intensive.

In the National Academies of Sciences, Engineering, and Medicine’s
report on reproducibility and replicability, one of their stated con-
clusions is that the “scientific enterprise depends on the ability of
the scientific community to scrutinize scientific claims and to gain
confidence over time in results and inferences that have stood up
to repeated testing” [18]. It follows that technical efforts to support
reproducibility should support the process by which scientists can
scrutinize scientific claims. Existing research in open science, FAIR
(Findability, Accessibility, Interoperability, and Reusability [31])
data repositories, virtualization, and code re-execution all support
scientific scrutiny but do not achieve it.

Computational science increases the burden of understanding to
include not only the domain expertise about the research question
being answered, but the computational expertise to understand
and use the methods. While an ecologist will likely be happy to
have an R environment managed for them, they should still be
able to meaningfully engage with the R scripts executing within
that environment. The challenge we face is decoupling the compu-
tational expertise from the domain expertise. How do we help a
reviewer relate the algorithms and methods embodied in the code
to the prose in the paper? Pedagogical research recommends that
learners require an “appropriate level of challenge” [15], because
understanding requires cognitive effort. An activity can be either
too hard or too easy, and when an activity is too easy, a learner
“completes the goal with little to no effort and is not pushed to
improve” [15]. While comprehension of an artifact is different from
conventional classroom learning, we claim that the requirement
for cognitive effort applies to scrutinizing research artifacts.

Push-button or automatic reproducibility shifts the goal of ar-
tifact review from comprehension and scientific scrutiny to the
simpler goal of seeing a research artifact produce the results de-
scribed in the paper. Consider MERIT, the fully automatic machine
learning reproducibility system [33]. It works only because it is
embedded in Tribuo [22], which trains the models it is reproducing.
Its users need not understand the program they are reproducing,
because the system is automatic. Furthermore, Tribuo itself is in-
flexible; it does not allow users to control the training loop, which
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substantially improves the provenance quality at the cost of mak-
ing certain computations difficult to perform. This fundamentally
enables MERIT’s automatic reproducibility, and the authors admit
that letting “users control the training loop” is a barrier to repro-
ducibility. Therefore, if a researcher trains a Tribuo model for a
novel purpose as part of a publication, an artifact reviewer could re-
produce the results without confirming that the model architecture
and parameters correspond to those described in the publication.
Despite being “reproducible”, that model is still opaque and resists
scrutiny. MERIT is still far preferable to the alternative, as providing
no assistance returns us to a time when researchers struggled to
re-execute code at all resulting in the “reproducibility crisis” [4].
As we discuss in Section 5, future work could build upon tools such
as MERIT, using provenance data to facilitate comprehension [6].

The additional computational knowledge required to make com-
putational experiments more reproducible and to understand how
to reproduce a computational experiment adds mental overhead
that dissuades scientists. Surveys revealed that researchers feel
there is not enough time for reproducible practices and that they
do not have enough knowledge and training of these practices
[4, 10, 25, 26, 28]. Other studies have demonstrated that even when
authors are sharing artifacts a reviewer will likely required mod-
erate to significant effort to achieve satisfactory reproducibility
[28-30, 32]. We now face a balancing act: from the perspective
of an author a reproducibility artifact must not be “too hard” to
produce, from the perspective of a reviewer it must not reduce
engagement or it makes the artifact hard to scrutinize, but if it is
too challenging to reproduce, reviewers might not have sufficient
time and energy. Addressing this problem requires investigating an
artifact’s role and defining what it means to comprehend something.

3 Cognitive Background for Comprehensibility

Given that comprehension is a process occurring in the human
mind, we discuss the cognitive background involved in generating
a computational experiment and the role artifacts play in scien-
tific review. We take inspiration from other human and cognitive-
focused fields, such as pedagogy, and propose a new framework for
identifying the actions a reviewer can accomplish with an artifact.

When scientists produce a publication, they have not only writ-
ten a paper and produced a research artifact, they have built a
mental “theory” [19]. Ryle introduced this theory [24], and Naur
discussed how a programming team builds this theory while cre-
ating a program [19]. He states that this theory “is understood as
the knowledge a person must have in order not only to do certain
things intelligently but also to explain them, to answer queries
about them, to argue about them, and so forth”. Crucially, the the-
ory involves more than just how the program executes; it includes
its relationship to the real world in concepts inexpressible as a pro-
gram or documentation. Someone lacking this theory is unable to
effectively engage with the program, or in our case, a research arti-
fact. Supporting scientific scrutiny requires that publications with
computational artifacts provide methods to facilitate reconstruc-
tion of the original author’s theory in the mind of someone else. In
other words, an artifact should act partially as a pedagogical tool for
the scientists interacting with it, to support their comprehension
process.
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Reproducibility Support Taxonomy

Develop a "theory" of the program or process. The reproducer doesn't just

execute code but comprehends the underlying model, can explain design

decisions, relate the solution to real-world problems, and anticipate how
Fchanges might affect outcomes.

Examine the outcome against the original results, identify any
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Obtaining the necessary data, code,
and documentation without
Obtain necessarily understanding their

interconnections.

Figure 1: A “reproducibility support taxonomy” identifying
each of the actions enabled and the artifacts necessary to
achieve the kind of reproducibility that facilitates scientific
scrutiny.

Bloom’s Cognitive Taxonomy provides a categorization for the
different stages of learning [5]. Note that comprehension’
second stage. Bloom defined comprehension as a phenomenon oc-
curring exclusively within the mind of a human being as they
engage with educational material and is the next step past simply
remembering facts. When someone has comprehended or under-
stood something, they can explain it in their own words and draw
logical conclusions based on the information they learned. When
a scientist engages with a paper and its associated artifact, if they
reach the comprehension stage they have made substantial progress
towards re-creating the original authors’ mental theory. Ideally, the
artifact will encourage this theory building process.

An artifact’s properties enable varying types of interactions that
support reproducibility, and ultimately, a scientist’s comprehen-
sion. We propose a “reproducibility support taxonomy” (Figure 1),
inspired by Bloom’s taxonomy [5], to illustrate stages of interac-
tions that suggest how reproducibility tools can assist in creating
artifacts ideal for the scientific process. Unlike Bloom’s taxonomy,
which describes a mental process, our taxonomy focuses on the
interactions with a user that an artifact supports. The taxonomy’s
base, obtain, is the artifact’s availability, as accessing it is a prereq-
uisite to any other action. The FAIR repositories, venue availability
requirements, and badging all point to this stage. The next stage,
provision, concerns the artifact’s computational environment and
whether a researcher can access or recreate one sufficient to exe-
cute the artifact. Virtualization technologies and reproducibility
packaging solutions assist with this stage and often the next stage:
re-execute. For a researcher to successfully re-execute an artifact,
the artifact should contain an unambiguous set of computational
steps that are free of errors. Workflow languages, build systems,

is its

!In a later revision, other researchers changed the name to “understanding” [3], but
for the sake of consistency, we will continue to use comprehension in this paper.
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and reproducibility packages all assist with this stage. Comparing
the results claimed in the paper to the artifact’s output is the penul-
timate stage of the taxonomy,verify. Most tools leave this task to
the user; however, noWorkflow [17], MERIT [33], and MXLP [16]
all provide methods of comparing results of executions.

Most importantly, this taxonomy reveals a critical gap towards
the goal of scientific scrutiny: comprehension. Few artifacts help a
user re-build the “theory” underlying the artifact. This outcome is
not entirely surprising, as it’s the lower stages of the taxonomy that
enable the higher stages. Only now, with the help of existing tools
and techniques, can we begin to address comprehension. Boufford
et al.’s LLM-generated provenance summaries [6] are, perhaps, a
first step. Unlike most tools that prioritize automation over explana-
tory power, these summaries are narratives of execution graphs.
We posit that reproducibility tools must balance automation with
explanatory power to scaffold true understanding rather than just
repeatable execution.

4 Now is the Ideal Time

The current landscape of cultural shifts towards reproducibility,
existing reproducibility solutions, and emerging technologies in
natural language processing makes now the ideal time to push
for comprehensibility. While researchers view time and effort as
barriers to pursuing proper reproducibility practices [4, 26], more
journals are promoting artifact badges [7] or requiring open science
practices. We also see communities such as Papers with Code [2]
that encourage publicizing your code alongside your paper. These
changes encourage researchers to pursue reproducibility practices,
and we should promote practices that encourage proper scientific
scrutiny via reproducibility comprehension. Without further guid-
ance, current reproducibility research and approaches focusing on
push-button reproducibility could converge on the opaque science
we described earlier. For example, badges are helpful, but artifact
evaluation committees (in the ACM, at least) consist of volunteers
with unclear guidelines. In fact, the ACM states that “it is still too
early to establish more specific guidelines for artifact and replica-
bility review.’? In practice, authors are incentivized to create the
simplest artifact possible to ensure that the reviewer has an effort-
less experience reproducing the artifact. This approach encourages
automatic reproducibility, often via virtualization and build sys-
tems. However, this process does not necessarily help validate the
claims from a publication, nor does it facilitate other researchers’
understanding and ability to build upon the work.

Recent advances in natural language processing using large lan-
guage models (LLMs) might allow tasks that would otherwise re-
quire substantial manual effort to be achieved automatically. A
significant component of comprehensibility is, of course, effective
construction of natural language. LLMs open up new avenues of
research that could explicitly help with comprehension and consis-
tency between a computational experiment and its corresponding
paper. These models have known weaknesses that we should rec-
ognize, but they have the potential to help.

https://www.acm.org/publications/policies/artifact-review-badging - retrieved April
2, 2025



ACM REP ’25, July 29-31, 2025, Vancouver, BC, Canada

5 Proposed Research Areas

We propose that the following research areas should be explored
to increase the comprehensibility of reproducibility artifacts.

To build a strong foundation for future work, we first recom-
mend that reproducibility researchers conduct more user studies
or at least explore existing research on user experience design and
learning theory. Comprehensibility is a human-centric phenom-
enon, and any tools we generate to achieve it should, therefore,
include human-centric studies. If the tools we build for scientists do
not have scientists’ input, we risk scientists disregarding them. Key
points of interest include determining how users currently interact
with and structure their workflows, identifying locations where
instrumentation such as provenance collection could be placed
automatically to reduce user effort for tracking experiments, and
finding what features of an artifact are conducive to learning.

We suggest using LLMs as supportive tools during the research
and writing processes. Imagine an Al assistant that provides repro-
ducibility suggestions while scientists work. If the scientist were
to add a new Python package to their script, the assistant could
provide a suggestion to add it to the project’s “requirements.txt”
file and then suggest a Dockerfile capable of building a suitable
environment. Alternatively, they can suggest connections between
the otherwise disjoint code and paper, facilitating the creation of an
artifact similar to ELISA [35], where sections of the code are associ-
ated with sections of the paper. A related example is DeepWiki [1]
that makes it easier to understand a codebase by automatically
generating documentation for a repository. However, our emphasis
is on suggestions rather than complete generation to ensure that the
scientist retains agency and is ultimately responsible for changes in
a project. While OpenAl has recently demonstrated that LLMs are
capable of, but not yet proficient at, replicating machine-learning
research just by reading the papers [27], we are not suggesting that
LLMs take over our replication studies in this manner. Doing so
would be replacing one opaque scientific method with another.

Alternatively, LLMs can facilitate the accuracy and consistency
of a paper across iterations. Suppose a researcher updates a numeric
result in their paper, downgrading recall from 99% to 98%. If the
researcher already had prose that referred to the previous value
(e.g., “Our model achieves a recall of 98%. This result outperforms
the state-of-the-art which achieves 98%.), that prose would now
be incorrect. In this contrived example, they might remember to
update the following sentence, but will they remember to update
their forward reference in their introduction? Or their summary
within their conclusion? What if out of a team of 10 authors one
makes all the changes, and then another rolls back only some?
LLMs have the potential to perform this type of proofreading. Then,
rather than change the prose, the model will bring any inconsistent
writing to the researcher’s attention - not modify the paper (Proof
of concept in Appendix A). This methodology ensures that even
though a researcher wrote the paper with Al assistance, the author
remains responsible for the contents of the paper.

Aided by new technology and the cultural shifts we described
earlier, we recommend revisiting previously explored or current
research areas to add comprehensibility as a key component. The
executable paper [9] is a previous topic that has seen less attention
recently. This method brings the code and prose closer together by
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hosting them in the same document thereby providing a reviewer
the opportunity to engage with the code relevant to the section
of the paper they are reading. An executable paper can provide
push-button reproducibility, but in this instance the proximity of
the result to the code that generated it increase transparency and
reduce the effort a reviewer needs to verify the result. Two barriers
to their current adoption include venue submission standards and
difficulty preparing the code for publication. Given the adoption
of reproducibility badges and open science initiatives, executable
papers could see more popularity as researchers and venues look for
accessible ways to promote open science. Even code preparation can
be more accessible as recent research has demonstrated that code
can be organized and explained without the use of language models,
instead using provenance or static analysis [12, 14]. However, for
those who want the LLM-powered research assistant, a language
model could augment a tool that collects contextual information to
assist a user with research programming, such as Burrito [11].

Fundamentally, can we build these tools that make reproducibil-
ity and comprehensibility more accessible and help users learn
better reproducibility practices? Survey respondents explain that
lack of training and knowledge around good practices affect re-
producibility outcomes [4, 26]. While workshops, classes, and self-
driven learning can help, those solutions already existed in some
form or another at the time of those surveys. Given researchers’
self-reported lack of time, they might not always be able to make
proactive decisions regarding their formal training. While we be-
lieve such an investment in their development is well worth it, they
might only learn enough to get through their current publication
before moving on to the next. Using the techniques we described
in the previous paragraphs, tools that can “nudge” scientists to-
ward producing more reproducible work might help them develop
skills over time. Consider a tool that could generate a template of
Krafczyk et al.’s proposed Reproduction Package and then provide
assistance in keeping the components consistent [13].

6 Conclusion

We call upon the reproducibility community to investigate new
technical solutions to old problems. Now is the time to shift our at-
tention to previously challenging issues given the new technologies
in Al the trajectory of field towards opaque push-button repro-
ducibility, and the growing cultural emphasis on open data and
transparent research practices. Adding computation to the scien-
tific process has created additional burdens for scientists. While
current research attempts to relieve those burdens, they inadver-
tently add new barriers to engaging with research artifacts. We
should provide solutions that help scientists mentally engage with
research artifacts, as well as relieve computational burdens. We
propose attention to the following areas: exploring ways scientists
engage with their workflows and research artifacts via user stud-
ies, tightening the connection between publication prose and code,
harnessing the capabilities of LLMs across various components of
the analysis and paper writing pipeline, and combining these new
areas with existing solutions to make reproducible and comprehen-
sible artifacts that encourage engagement. Committing to these
areas enable more effective artifact review, encourages building off
existing work, and increases trust in the scientific method.
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A LLM Proof-of-concept

This appendix presents a proof of concept demonstrating how large
language models (LLMs) can enhance the comprehensibility of sci-
entific papers. We illustrate this through two scenarios where we
use Perplexity AI's Sonar [21] model to respond to prompts involv-
ing text from a paper. These scenarios are intended purely as a proof
of concept, with a limited set of data as the paper section we chose is
not particularly long. We chose a smaller text to demonstrate model
capability, and ensure that those reviewing these scenarios would
not need to read an entire paper to understand the output. Further
studies should be done to determine ideal prompts, integration into
a workflow, and efficacy on larger bodies of text.

A.1 Experimental Setup

We examine the Al’s ability to assess the robustness of claims
when experimental results change. The Al extracts key claims and
then analyzes their dependence on the reported data, determining
whether claims remain logically valid, need qualification, or require
retraction. The model produced outputs in a tabular format, and
we have preserved the content but modified the table formatting to
be interpretable by IKTEX.
Our two scenarios are as follows:

(1) Two zero-shot prompts where the Al examines an original
passage and a modified passage independently.

(2) One zero-shot prompt where the AI has access to both an
original and modified passage and must explain the impact
of the change.

A.1.1 Input Text. We used the entirety of Section 6 (Discussion
and Conclusion) from Obadage et al.’s paper Can citations tell us
about a paper’s reproducibility? A case study of machine learning
papers [20]. We chose a sentence that reports a numerical result and
for each of the scenarios we use the original passage or a version
we modified:

Original passage:
“We trained two sentiment analysis models and achieved
F1-scores of 0.7-0.86.

Modified passage:

“We trained two sentiment analysis models and achieved
F1-scores of 0.2-0.46.”

We perform this modification to make the results “worse” to
evaluate how the model will respond to a change that weakens the
paper’s claims.

A.2 Scenario 1

We performed two zero-shot prompts with the same context and
same instructions to analyze the provided section of the paper. In
the first prompt, we kept the section as it was in the paper. In the
second prompt, we use the modified passage. These outputs are
found in Table 1 and Table 2. Each row is a claim extracted from
the section by the model and, despite being performed across two
zero-shot prompts, both tables contain the same claims in each
row—even if the wording varies slightly.

A.2.1 Prompt.

Wonsil et al.

Context. You are an Al assistant tasked with analyzing scientific
papers. Your goal is to verify whether the claims made in the prose
of a paper remain valid if the experimental results or numerical
outcomes were to change. This is to support reproducibility and
comprehensibility by assessing the logical and conceptual stability
of claims independent of specific results.

Instructions. Given the prose of a scientific paper (introduction,
discussion, conclusion, or claim statements) and a set of experimen-
tal results, perform the following:

(1) Identify and extract key claims or conclusions explicitly
stated in the prose.
(2) Determine how strongly each claim depends on the specific
reported results.
(3) Assess if the claim holds true. For example:
o Is the claim logically or theoretically supported beyond
the specific results?
e Does the claim need to be qualified or retracted?
o Are there any assumptions or conditions that must hold
for the claim to be valid?
(4) For each claim, output a clear explanation of whether it is
robust or fragile with respect to results, including reasoning
and any relevant caveats.

A.3 Scenario 2

In the second scenario, we performed a zero-shot prompt with
the same context as previously, but modified the instructions to
explicitly compare the modified (“recompiled”) version of the paper,
contrasting it to the original passage. We provided both passages
as part of the same prompt. The output can be found in Table 3.

A.3.1 Prompt.

Context. You are an Al assistant tasked with analyzing scientific
papers. Your goal is to verify whether the claims made in the prose
of a paper remain valid if the experimental results or numerical
outcomes were to change. This is to support reproducibility and
comprehensibility by assessing the logical and conceptual stability
of claims independent of specific results.

Instructions. We have just re-compiled our paper. Confirm that
any of the results we reference are consistent with how we describe
them in the prose and that they support the arguments we are
making.

(1) Examine or identify what has changed between the two

versions.

(2) Identify the claims that those changes affect.

(3) Assess claim robustness in light of the modified results.

A.4 Discussion

We determined that LLMs have the potential to provide assistance
with ensuring the claims made in a paper are consistent with the
results reported, and provide explanations for its reasoning when
they do not.

Scenario 1. Even though the model has no access to the original
results, it can identify that in the modified passage the “correla-
tion between sentiment and reproducibility scores” is poor, and
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downgrades its assessment from “Moderately robust” (Table 1) to
“Fragile to some extent” (Table 2).

Scenario 2. We note that the model effectively highlighted changes
between the original and modified versions, and offered a concise
summary of how these changes affected the stated claims (Table 3).

We believe this functionality may be useful for authors or re-
viewers who need to scan for inconsistencies between reported

ACM REP ’25, July 29-31, 2025, Vancouver, BC, Canada

results and their interpretations in the prose, especially given the
iterative nature of computational experiments. Finally, we note that
this evaluation represents a proof-of-concept based on a single,
simple example. As such, it might not generalize across all types
of result modifications or claim structures. Further investigation is
warranted to assess the robustness and limitations of this approach
across a broader set of cases.
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Claim

Robustness

Explanation

Correlation between sentiment and re-
producibility scores

Moderately robust

Improved model accuracy supports meaningful correlations;
still preliminary and dataset-limited.

Potential to estimate reproducibility sta-
tistically

Fragile but promising

Conditional on further verification; improved results increase
confidence in potential.

Citation contexts signal reproducibility | Moderately robust Supported by data and plausible assumptions; interpretation
efforts depends on citation behavior assumptions.

Citation sentiment should not replace | Robust Theoretical caution independent of results; sound methodologi-
experiments cal advice.

Limitations and future work Robust Methodological transparency and future plans are valid regard-

less of results.

Table 1: Scenario 1 - Original Passage

Claim

Assessment of Robust-
ness

Explanation

Correlation between sentiment and re-
producibility scores

Fragile to some extent

The correlation depends on the quality and size of the dataset
and model performance. With low F1-scores and limited data,
the strength of correlation could vary with more data or better
models. The claim should be qualified as preliminary and ex-
ploratory.

Potential to estimate reproducibility sta-
tistically from citation contexts

Fragile, conditional

This claim is explicitly conditional on verification with larger
datasets. It is a hypothesis supported by current trends but
requires further validation before being considered robust.

Citation contexts contain signals about | Moderately robust Conceptually plausible and supported by observed correlations,

reproducibility efforts but interpretation depends on assumptions about citation be-
havior and sentiment meaning. It holds if the assumption that
sentiment reflects reproducibility efforts is valid.

Citation context sentiment should not | Robust This is a theoretical and methodological caution that stands

replace direct experiments independently of results, emphasizing that sentiment analysis
is a surrogate, not a replacement.

Limitations and future work Robust These are methodological acknowledgments and plans, inher-

ently independent of results and valid as stated.

Table 2: Scenario 1 - Modified Passage
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Aspect Examined

Change Identified

Claims Affected

Assessment of Claim Robustness

Sentiment analysis model
F1-scores

Original: 0.7-0.86
Recompiled: 0.2-0.36

Claims about model perfor-
mance and reliability of senti-
ment analysis results

The substantial drop in F1-scores indi-
cates much weaker model performance
than originally reported. This weakens
confidence in the sentiment signals ex-
tracted, potentially undermining claims
about reliably detecting reproducibility-
related sentiments from citation con-
texts. The claim that models “exhibited”
correlations still holds, but the strength
and reliability of those correlations are
now questionable.

Correlation trends between
sentiment and reproducibil-
ity scores

No change reported in correlation
direction or qualitative description

Claims about increasing pos-
itive sentiment and decreas-
ing negative sentiment with
rs_score

The qualitative trends remain consis-
tent, supporting the conceptual claim
that citation sentiments relate to repro-
ducibility scores. However, given the
low F1-scores, these trends may be nois-
ier or less robust than initially implied.
The claim is still plausible but should be
presented with stronger caution regard-
ing reliability.

Overall interpretation of
findings

No change in interpretation text

Claims about potential to statis-
tically estimate reproducibility
from citation contexts and sur-
rogate use

The lowered model performance weak-
ens the practical feasibility of using ci-
tation sentiment as a reproducibility
proxy. The cautious language (“If veri-
fied...”, “may be useful”) remains appro-
priate and necessary. The claim remains
conceptually valid but is now more ten-
tative and dependent on future improve-
ments and larger datasets.

Limitations and future

work

No change in limitations or future
work description

Claims about limitations (train-
ing data size, selection bias) and
future plans

These claims remain fully consistent
and appropriate. The low F1-scores rein-
force the stated limitation of small train-
ing data, underscoring the need for ex-
panded labeling and dataset collection.
No adjustments needed here.

Table 3: Scenario 2 - analysis of changes between original and recompiled paper versions and their impact on claims.
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