Experience with Reproducibility and Consistency in Writing an
Academic Paper

Joseph Wonsil
University of British Columbia
Vancouver, British Columbia, Canada
jwonsil@student.ubc.ca

Abstract

The iterative processes of writing code for an analysis and writing a
paper based on that analysis often occur synchronously. Although
this process is not inherently a problem, it can lead to inconsis-
tencies between the data, the figures in the paper, and the prose
that discusses those charts. We present our experience writing
a paper that achieves consistent and reproducible results using
standard tools from the reproducibility literature. We report the
lessons learned from this experience and note that, while it adds
additional upfront work and some mental overhead, we succeeded
in satisfying our requirements. We then propose a research agenda
to generate improved tools that will make these techniques widely
accessible.

Keywords

reproducibility, provenance

ACM Reference Format:

Joseph Wonsil, Nichole Boufford, and Margo Seltzer. 2025. Experience with
Reproducibility and Consistency in Writing an Academic Paper. In ACM
Conference on Reproducibility and Replicability (ACM REP °25), July 29-31,
2025, Vancouver, BC, Canada. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3736731.3746136

1 Introduction

The reproducibility literature focuses on making data processing
and analysis reproducible. However, the challenges in ensuring
the corresponding paper accurately describes the results are often
overlooked. Data analysis using code and writing the paper that de-
scribes such a data analysis are both iterative processes. Errors can
appear, because these two iterative processes occur synchronously.
Suppose an author included two figures in a paper using results
from the same computational analysis. They later modify the anal-
ysis and update “Figure 1” accordingly. By modifying the analysis,
they might have unknowingly changed the result in “Figure 2” with-
out updating the figure in the paper. In this scenario, a result is any
text, figure, table, or other output generated from an analysis or
manually compiled from external sources such as other papers. The
results in their paper are no longer consistent; different executions
of different versions of their analysis generated each result.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ACM REP °25, Vancouver, BC, Canada

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1958-5/25/07

https://doi.org/10.1145/3736731.3746136

Nichole Boufford
Oracle Labs
Vancouver, British Columbia, Canada
nichole.boufford@oracle.com

Margo Seltzer
University of British Columbia
Vancouver, British Columbia, Canada
mseltzer@cs.ubc.ca

To avoid these pitfalls while writing a now-published repro-
ducibility paper, we set three requirements for our “analysis to
paper pipeline” to ensure we lived up to the reproducibility expec-
tations we described in our paper.

R.1) Whenever we build our paper, any referenced result should
be up-to-date and consistent with the most recent run of the
analysis. This requirement implies that for any script that
produces multiple results, if we make any changes to the
script for one result, when we re-execute it, all the results it
produces are updated in the paper.

R.2) Anywhere we reference a result while writing the paper
should be distinguishable from the rest of the prose.

R.3) The pipeline should be able to execute on others’ machines
with minimal effort.

We chose to build our own pipeline, because we believed that
there was not a single tool that would satisfy all our requirements.
Several tools came close, but ultimately did not satisfy our require-
ments nor catered well to the venue’s guidelines.

We constructed our pipeline out of tools that computer scientists,
Linux users, and those familiar with reproducibility are likely to
find familiar. We used GNU Make (Make) [4] to statically track
dependencies, execute the data analysis, and build our paper. This
approach satisfies R1 by ensuring a consistent and repeatable order
of executions to go from data to paper. It also partially satisfies R2 as
it requires saving our results to intermediate files tracked by Make
that we identify using macros in our paper. We finish satisfying R2
by writing Python [1] helpers to assemble the pipeline. We satisfy
R3 by creating a Docker container [3] that we use for both the
development and push-button execution of our pipeline. All these
components living in a single git repository backed up on GitHub
ensured that it was trivial to share our setup with anyone who had
access to a machine, git, Docker, and the internet.

We identify cases where these tools worked well, where there is
potential for significant improvement, and problems that remain.

2 Implementation

Our pipeline initially consisted of a Python data analysis hosted
in a Jupyter notebook and a paper draft written in Markdown,
both saved into one Git repository. The submission venue required
submissions written in Microsoft Word, but as authors attempting
to follow good data management practices, we wrote the paper
in Markdown and then "built" a Word document using pandoc!.
Writing our paper in Markdown meant that our paper could be
version-controlled in the same git repository as our analysis, which
helped keep the two components consistent.

!pandoc.org


https://orcid.org/0000-0003-4024-239X
https://orcid.org/0000-0002-0420-5519
https://orcid.org/0000-0002-2165-4658
https://doi.org/10.1145/3736731.3746136
https://doi.org/10.1145/3736731.3746136
https://doi.org/10.1145/3736731.3746136

ACM REP ’25, July 29-31, 2025, Vancouver, BC, Canada

Make helped satisfy R1 by ensuring that any time we modified
our analysis, the script would re-execute and save the results. We
set the Make target for our final paper to depend on the contents of
the directories that contained our results; if a single number in any
of the results changed, the whole paper was recompiled. Whenever
we changed our notebook and then tried to build the paper, Make
automatically converted the notebook to a single script, re-created
the analysis script, re-executed the script, and then updated all the
results in the paper before recompiling it, thus satisfying R1.

We wrote any computation that Make could not perform in
Python helpers, such as macro-substitution to connect the analysis
and the paper. One helper ensured data were saved to the direc-
tories declared as dependencies in our Makefile. In the paper, we
refer to these macros instead of the result itself. Searching for the
macro identifiers allowed us to quickly identify everywhere that we
reference a result, satisfying R2. A Python script then read the files
in the output directories and replaced any instance of the “macro”
with the matching file’s contents. We used this process to insert all
textual results into our paper.

Since using Python introduced a dependency problem for repro-
ducibility, we placed a Dockerfile that creates a container capable
of executing everything from start to finish in our pipeline into our
main directory. Using Docker ensured that we could execute across
multiple devices, satisfying R3.

3 Lessons learned

Our extended pipeline simplified the mental overhead required to
keep our paper consistent and reproducible at the cost of upfront
work. Once we built the pipeline, it required minimal maintenance.
Future users, such as ourselves, can avoid a significant amount of
upfront overhead by using our project as a template.

At the start, we viewed our upfront work as “insurance” and
wondered if it would pay off - and it did. At one point, we changed
how we framed the discussion of the results we were reporting,
i.e., rather than minimize errors, we maximized successes. Our
setup allowed us to quickly identify where we had numbers in the
prose that needed updating to reflect this change. Then, months
after its completion, we were able to pick up where we left off
when we were writing a response to the editors. Most of all, we
felt comfortable with the reproducibility and consistency of our
results, since our numbers always came from the same execution in
a portable environment. However, the automatic execution of our
analysis did reveal a startling new fear: numbers we refer to could
change without our knowledge, causing a disconnect between their
reality and the prose. We realized that while we are heading in the
right direction, more work remains to be done if we want the paper
itself to be cohesive and always accurate. Therefore, if the goal is
to ensure that a paper is always consistent, this toolchain helps,
but it cannot guarantee that your prose matches your results.

Our experience revealed that our pipeline could use more de-
tailed provenance tracking. Using the macros, we can identify where
we use results, but sometimes we stop using some of these results,
causing bloat in our directories. However, we also noticed that if
we stop generating a result from our analysis, the saved result will
still exist even though the analysis no longer writes to it every time
it executes. Because it would still be substituted into the paper by

Wonsil et al.

our Python script, we would have a false guarantee that it came
from the most recent run. We could identify these unnecessary data
in the directory with more detailed provenance tracking.

A more serious issue for our system is that it does not report
errors or warnings. A particularly interesting error is one that
creates a mismatch between prose and numerical results. Imagine
that a change to a script changes results in ways that we did not
anticipate, e.g., producing results for our system that were originally
better than a baseline comparison but no longer are. Suddenly the
paper’s claims that our system outperformed the baseline would
be wrong! With our tool, it is theoretically easier for an editor to
notice that, for example, a number comparison no longer makes
sense (“Why do we claim 94% recall is better than 96%!?”). The
simplest solution is to generate a diff of the paper before each
compilation. This diff could bring changes to the attention of any
diligent editor. Unfortunately, this solution will not help with results
that are indirectly referenced. For example, the paper might only
say, “and we outperform the state of the art” in the introduction.

4 Related Work

The closest existing tool to our makeshift pipeline is Madagascar
[2]. It is an analysis-to-paper pipeline, originating from geophysics.
Madagascar uses SCons, which has properties they found more
desirable than Make such as tracking changes using MD5 hashes.
Madagascar could replace Make in our pipeline, as they built ex-
tensions to SCons that facilitate connecting analyses to papers.
However, it still has most of the same flaws as our pipeline.

Executable papers are interactive programs that include datasets
and code to validate results alongside a publication [5]. This process
requires less provenance tracking to connect the code to the prose,
as there is a direct connection by construction. Unfortunately, it is
challenging to submit executable papers when many venues have
set submission formats (e.g., Latex or Microsoft Word).

5 Conclusion

Our experience developing our pipeline reveals that writing consis-
tent and reproducible papers becomes more attainable with care-
ful proactive effort. We constructed a reliable pipeline from data
analysis to final publication with existing tools that satisfied our
requirements and, once assembled, was easy to maintain. However,
it is imperfect, as there is no detailed provenance tracking for the
files used between the analysis and the paper. We also prefer, in
the future, to have a way to run automatic checks or tests on the
results to make sure that they support the claims in the prose and
have not changed too drastically.

References

[1] [n.d]. The Python
https://docs.python.org/3/reference/index.html.

[2] Sergey Fomel, Paul Sava, Ioan Vlad, Yang Liu, and Vladimir Bashkardin. 2013.
Madagascar: Open-Source Software Project for Multidimensional Data Analysis
and Reproducible Computational Experiments. Journal of Open Research Software
1,1 (Nov. 2013), e8—e8. doi:10.5334/jors.ag

[3] Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment. Linux Journal 2014, 239 (March 2014), 2:2.

[4] Paul D. Smith Richard M. Stallman, Roland McGrath. 2020. GNU Make. Free
Software Foundation.

[5] RudolfJ Strijkers, Reginald Cushing, Dmitry Vasyunin, Cees de Laat, Adam Bel-
loum, Robert ] Meijer, et al. 2011. Toward Executable Scientific Publications.. In
ICCS. 707-715.

Language Reference.


https://doi.org/10.5334/jors.ag

	Abstract
	1 Introduction
	2 Implementation
	3 Lessons learned
	4 Related Work
	5 Conclusion
	References

